Iran-based researchers have developed a novel and cost-effective anode catalyst that can improve and stabilize the power generation performance of microbial fuel cells treating vegetable oil industry wastewater., the scientists explain that MFCs convert the chemical energy stored in organic matter in wastewater into electricity using bacteria as a catalyst. For years now, the team has been investigating how the modification of the electrodes can improve the performance of this technology.
“In order to improve bacterial adhesion and efficient electron transfer between bacteria and the electrode surface, the electrode should be modified and its surface area increased to ensure efficient current collection and power yield through the decomposition of organic compounds in the wastewater,” the researcher explained. “Based on the results of this study, the
According to the researcher, the findings from this study are the latest in continuing efforts to improve MFC performance. “A tremendous breakthrough has been made regarding power output in MFCs from a few mW⋅cm-2 or mW⋅cm-3 to several W⋅cm-2 or W⋅cm-3, an improvement of three orders of magnitude, owing to continuous efforts of researchers,” he noted. “The use of fossil fuels, especially oil and gas, in recent years has accelerated and this is triggering a global energy crisis.
“Since traditional wastewater treatment has various limitations, sustainable implementations of MFCs might be a feasible option in wastewater treatment as well as green electricity production, bio-hydrogen synthesis, carbon sequestration, and environmentally sustainable sewage treatment,” the scientist pointed out.