Social Media Companies Remind Us It Is Still Hard To Replace Humans With AI

  • 📰 Forbes
  • ⏱ Reading Time:
  • 62 sec. here
  • 3 min. at publisher
  • 📊 Quality Score:
  • News: 28%
  • Publisher: 53%

Canada News News

Canada Canada Latest News,Canada Canada Headlines

As Silicon Valley rushes us forward towards our AI future, even it is hiring armies of humans to work alongside those algorithms. Our automated future will look a lot less like robots replacing humans and a lot more like symbiotic workforces blending the best of both our worlds.

Companies have rushed to embrace deep learning’s potential in their efforts to automate their enterprises, often with an eye towards replacing as much of their human workforce as possible or to scale their operations without expanding their hiring. An endless stream of success stories tout AI’s success in replacing an ever-growing array of traditionally automation-resistant jobs, while developers are hard at work finding ways to replace the rest of them.

Facebook represents this contradiction. While publicly touting the company’s AI-driven future and investing heavily in building a world-class AI research staff, the company is also rapidly hiring human content moderators. Even as the company increasingly deploys AI algorithms to moderate speech on its platform, it has more than 15,000 community operations staff and growing.

Much like an infant’s simplest movements spark wonderment in new parents, so too do the most basic of AI accomplishments give rise to an image of intelligent machines just around the corner. The simple fact is that while impressive compared to past algorithmic approaches, today’s most advanced AI systems remain primitive compared to even the youngest human child.

Content understanding showcases both deep learning’s greatest strengths and its greatest weaknesses. Today’s algorithms are light years ahead of where they were just a decade ago, yet at the same time, they struggle immensely to cope with the complexities of human discourse. Machines still see imagery largely through the lens of metadata subject tags applied through classifiers, while textual posts are understood through similar classification or simple embeddings.

 

Thank you for your comment. Your comment will be published after being reviewed.
Please try again later.
We have summarized this news so that you can read it quickly. If you are interested in the news, you can read the full text here. Read more:

 /  🏆 394. in CA

Canada Canada Latest News, Canada Canada Headlines

Similar News:You can also read news stories similar to this one that we have collected from other news sources.

Can Social Media Companies Detect Future Mass Shooters?Trump has called for such initiatives, though he didn't specify what they would be.
Source: papermagazine - 🏆 409. / 53 Read more »