It’s coming. Generative AI will change the nature of how we interact with all software, and given how many brands have significant software components in how they interact with customers, generative AI will drive and distinguish how more brands compete.we discussed how the use of one’s customer information is already differentiating branded experiences.
So much of the hype on generative AI has focused on its ability to generate text, images, and sounds, but it also can create code to automate actions, and to facilitate pulling in external and internal data. By generating code in response to a command, it facilitates the short cut for a user that takes them from a command to an action that simply just gets done. No more working through all of the menus in the software.
Combining one’s own proprietary data with public data, data from other available AI tools, and from many external parties can serve to dramatically improve the AI’s ability to understand one’s context, predict what is being asked, and have a broader pool from which to execute a command. These constraints become even more critical in the era of generative AI. As pioneers of these solutions are finding, customers will be quick to point out when the machine “breaks” and produces non-sensical solutions. The best approaches will therefore start small, will be tailored to specific solutions where the rules can be tightly defined and human decision makers will be able to design rules for edge cases.
The risks — from the core data, to the management of data, to the nature of the output of the generative AI — will simply keep multiplying. Some companies, such as American Express, have created new positions for chief customer protection officers, whose role is to stay ahead of potential risk scenarios, but more importantly, to build safeguards into how product managers are developing and managing the systems.