Deep Reinforcement Learning Libraries and Deep Reinforcement Learning in Finance

  • 📰 hackernoon
  • ⏱ Reading Time:
  • 26 sec. here
  • 2 min. at publisher
  • 📊 Quality Score:
  • News: 14%
  • Publisher: 51%

Nederland Nieuws Nieuws

Nederland Laatste Nieuws,Nederland Headlines

Explore the landscape of open-source DRL libraries for finance, including OpenAI Gym, Google Dopamine, RLlib, and TensorLayer

Authors: Xiao-Yang Liu, Hongyang Yang, Columbia University ; Jiechao Gao, University of Virginia ; Christina Dan Wang , New York University Shanghai . Table of Links Abstract and 1 Introduction 2 Related Works and 2.1 Deep Reinforcement Learning Algorithms 2.2 Deep Reinforcement Learning Libraries and 2.3 Deep Reinforcement Learning in Finance 3 The Proposed FinRL Framework and 3.1 Overview of FinRL Framework 3.2 Application Layer 3.3 Agent Layer 3.4 Environment Layer 3.

1 Deep Reinforcement Learning Algorithms 2 Related Works and 2.1 Deep Reinforcement Learning Algorithms 2.2 Deep Reinforcement Learning Libraries and 2.3 Deep Reinforcement Learning in Finance 2.2 Deep Reinforcement Learning Libraries and 2.3 Deep Reinforcement Learning in Finance 3 The Proposed FinRL Framework and 3.1 Overview of FinRL Framework 3 The Proposed FinRL Framework and 3.1 Overview of FinRL Framework 3.2 Application Layer 3.2 Application Layer 3.3 Agent Layer 3.3 Agent Layer 3.

Wij hebben dit nieuws samengevat zodat u het snel kunt lezen. Bent u geïnteresseerd in het nieuws, dan kunt u hier de volledige tekst lezen. Lees verder:

 /  🏆 532. in NL
 

Bedankt voor uw reactie. Uw reactie wordt na beoordeling gepubliceerd.

Nederland Laatste Nieuws, Nederland Headlines

Similar News:Je kunt ook nieuwsberichten lezen die vergelijkbaar zijn met deze die we uit andere nieuwsbronnen hebben verzameld.

Deep Reinforcement Learning Framework to Automate Trading in Quantitative FinanceFinRL is an open-source framework for quantitative traders, simplifying DRL strategy development with customizable, reproducible, and beginner-friendly tools.
Bron: hackernoon - 🏆 532. / 51 Lees verder »