Streamlining LLM Implementation: How to Enhance Specific Business Solutions with RAG

  • 📰 hackernoon
  • ⏱ Reading Time:
  • 21 sec. here
  • 2 min. at publisher
  • 📊 Quality Score:
  • News: 12%
  • Publisher: 51%

ประเทศไทย ข่าว ข่าว

ประเทศไทย ข่าวล่าสุด,ประเทศไทย หัวข้อข่าว

Learn how to enhance your LLMs with retrieval-augmented generation, using LlamaIndex and LangChain for data context, deploying your application to Heroku.

Having the correct data to support your use case is essential to a successful implementation of LLMs in any business. While most out-of-the-box LLMs are great at tasks, they can struggle with specific business problems. They didn’t train on the data for your business problem, so they don’t have adequate context to solve it. general Businesses often have a treasure trove of internal data and documents that could meet this need for specific context.

Our index — now a series of vector embeddings in memory — will be lost completely after we make our call to the OpenAI model and finish the workflow. Creating a vector index for our text isn’t , so we don’t want to have to recompute those results every time we call the model. It’s best to have a separate workflow where we persist the index to disk. Then, we can reference it at any time later.

 

ขอบคุณสำหรับความคิดเห็นของคุณ ความคิดเห็นของคุณจะถูกเผยแพร่หลังจากได้รับการตรวจสอบแล้ว
เราได้สรุปข่าวนี้มาให้อ่านอย่างรวดเร็ว หากสนใจข่าว สามารถอ่านฉบับเต็มได้ที่นี่ อ่านเพิ่มเติม:

 /  🏆 532. in TH

ประเทศไทย ข่าวล่าสุด, ประเทศไทย หัวข้อข่าว