Deep Reinforcement Learning Libraries and Deep Reinforcement Learning in Finance

  • 📰 hackernoon
  • ⏱ Reading Time:
  • 26 sec. here
  • 2 min. at publisher
  • 📊 Quality Score:
  • News: 14%
  • Publisher: 51%

Brasil Notícia Notícia

Brasil Últimas Notícias,Brasil Manchetes

Explore the landscape of open-source DRL libraries for finance, including OpenAI Gym, Google Dopamine, RLlib, and TensorLayer

Authors: Xiao-Yang Liu, Hongyang Yang, Columbia University ; Jiechao Gao, University of Virginia ; Christina Dan Wang , New York University Shanghai . Table of Links Abstract and 1 Introduction 2 Related Works and 2.1 Deep Reinforcement Learning Algorithms 2.2 Deep Reinforcement Learning Libraries and 2.3 Deep Reinforcement Learning in Finance 3 The Proposed FinRL Framework and 3.1 Overview of FinRL Framework 3.2 Application Layer 3.3 Agent Layer 3.4 Environment Layer 3.

1 Deep Reinforcement Learning Algorithms 2 Related Works and 2.1 Deep Reinforcement Learning Algorithms 2.2 Deep Reinforcement Learning Libraries and 2.3 Deep Reinforcement Learning in Finance 2.2 Deep Reinforcement Learning Libraries and 2.3 Deep Reinforcement Learning in Finance 3 The Proposed FinRL Framework and 3.1 Overview of FinRL Framework 3 The Proposed FinRL Framework and 3.1 Overview of FinRL Framework 3.2 Application Layer 3.2 Application Layer 3.3 Agent Layer 3.3 Agent Layer 3.

 

Obrigado pelo seu comentário. Seu comentário será publicado após ser revisado.
Resumimos esta notícia para que você possa lê-la rapidamente. Se você se interessou pela notícia, pode ler o texto completo aqui. Consulte Mais informação:

 /  🏆 532. in BR

Brasil Últimas Notícias, Brasil Manchetes

Similar News:Você também pode ler notícias semelhantes a esta que coletamos de outras fontes de notícias.

Deep Reinforcement Learning Framework to Automate Trading in Quantitative FinanceFinRL is an open-source framework for quantitative traders, simplifying DRL strategy development with customizable, reproducible, and beginner-friendly tools.
Fonte: hackernoon - 🏆 532. / 51 Consulte Mais informação »